

Trigeminal Autonomic Cephalalgias (TACs)

TACs

- I. Unilateral headache
- 2. Prominent cranial parasympathetic autonomic features at the same side
 - 3.1 Cluster headache (CH)
 - 3.2 Paroxysmal hemicranias (PH)
 - 3.3 Short-lasting unilateral neuralgiform headache attacks (SUNCT)
 - 3.4 Hemicrania continua (HC)
 - 3.5 Probable trigeminal autonomic cephalalgia

ICHD-3 . Cephalagia 2018

8. Manzoni et al. Cephalalgia, 1991

	Asian Studies (Taiwan, Japan, China, India, Korea)	Western Studies (UK, USA)
Numbers	540	1364
M:F Ratio	6.2: 1	2.6: 1
ССН (%)	2.4%	21%
Mean age at onset (yrs)	30.6	29.0
Family history of CH	2.4%	15.7%
Predominant laterality	Right	Right
Most cranial autonomic features	Lacrimation (78.8%)	Lacrimation (91%)
Sense of agitation or restlessness	49.8%	98.2%
Aura	< %	19.8%
Most common time	Nocturnal, afternoon	Nocturnal
Seasonal propensity	Dec., Mar (Spring)	Spring and Autumn

Lin et al., Cephalagia. 2003; Imai et al., Cephalagia. 2010; Dong et al., J Headache and Pain. 2013; Bahra et al., Neurology. 2002; Bhargava et al., J Neurosci Rural Pract. 2014; Moon et al., J Korean Med Sci 2017; Rozen and Fishman. Headache. 2012

	Taiwan	Japan	China	India	Korea	UK
	2003	2010	2013	2014	2017	2002
Numbers	104	86	120	30	200	230
M:F Ratio	6.4: I	3.8:1	7:1	9:1	7:1	2.5: 1
ССН (%)	0	3.5%	7.5%	0	0.5%	21%
Mean age at onset	26.9	31.0	26.7	38	30.7	28.4
Family history	5.8%		6.7%	0		5.0%
Predominant laterality	Right	Right	Right	Right	Left	Right
Most cranial autonomic features	Lacrimation (83%)	Lacrimation (66.3%)	Lacrimation (72.5%)	Lacrimation (83.3%)	Lacrimation (85.5%)	Lacrimation (91%)
Most additional features	Phonophobia (58%)	Nausea (39.5%)	Nausea (60%)	Phonophobia (40%)	Nausea (48.6%)	Phonophobia (56%)
Sense of agitation or restlessness	51%	68.9%	38.3%	80%	43.5%	93%
Aura	1%		0	0	0.5%	14%
Most common time	Midnight (28%)	Nocturnally (47.7%)	7am - 10am, 2pm - 4pm	2pm -5pm, I 2am - 4pm	Night (66.4%)	Nocturnally (73%)

CAS in cluster headache vs. migraine

Genetics (I)						
• CI	H in monozygot	tic twins $ ightarrow$ s	uggested a g	enetic component		
	L in the first de	ano a rolativa	o 14 45 fold	nielze		
		gree relative	S: 14-43 IOIU	risks		
Μ	igraine in first d	egree relativ	es: 2-8 fold r	isks		
Table 2. Age	e and gender standar	dised risk of clus	ster headache in	relatives of patients		
Country	Affected relatives	Number of affeo Observed	cted relatives Expected	Population relative risk (95% CI)		
Denmark ³⁷	First-degree	26	5-40	4.7 (3.1–6.9)		
	Second-degree	10	13-20	0.8 (0.4–1.4)		
USA ³⁸	First-degree	41	2.70	15.2 (11.1–21.1)*		
Italy ³⁹	First-degree	39	2.97	13-1 (9-0–17-3)		
	Second-degree	18	6.69	2.7 (1.5–3.9)		
France ⁴⁰	First-degree	22	1.25	17.6 (10.2–24.9)*		
Prevalence of cluster headache is assumed to be one person per 500. *Calculation made without correction for age.						
				Taga et al., Neurol Sci. 2015		
				Cruz et al., Arq Neuropsiquiatr. 2013		

Genetics (II)					
Study	Authors	Study	Authors		
HCRTR2 (1246 G>A, rs2653349,	Rainero, 2004 Bartsch, 2004	Mitochondrial DNA mutation	Cortelli, 1995		
rs5443)	Schürks, 2006 Baumber, 2006	NOS (NOSI, NOS2A, NOS3)	Sjostrand, 2002		
	Katsarou, 2018	CACNAIA	Sjostrand, 2001		
Fa	Fan, 2018 Fourier, 2019	CLOCK (3111T>C, rs1801260)	Rainero, 2005 Cevoli, 2008		
ADH4 (rs1800759, rs1126671)	Rainero, 2010 Zarrilli, 2015 Fourier, 2016		Zarrilli, 2015 Fan, 2018 Fourier, 2019		
	Fan, 2018	PER3	Ofte, 2016		
		GWAS (ADCYAPIRI, MME)	Bacchelli, 2016 Ran, 2017		

Method	Pain neuromatrix	
SPECT	Di Piero et al. 1997	ST - SI
PET	Hsieh et al. 1996	SMA
	May et al. 1998	ACC S2 DOC
	Sprenger et al. 2004	PFC Thalamus
	May et al. 2000	Amygdala
	Sprenger et al. 2006, 2007	
	Matharu et al. 2006	PAG
fMRI	Morelli et al. 2009	
	Sprenger et al. 2004	
Withou acute at	Healthy volunteers > patients (, tacks	but of bout') Brain metabolism 'in bout' > 'out of bout'

Oxygen Treatment of Acute CH

• Low-flow oxygen (6–7 l/min):

efficacy in 56%-82% of attacks.

• High-flow oxygen (12 l/min):

efficacy in 78% of attacks.

• Hyperbaric oxygen therapy:

evidence only for an acute (50-100%) in a few small studies

but not prophylaxis.

Petersen et al. Cephalagia 2014; Rozan et al., Pain Med 2013 Cohen et al JAMA. 2009; Nilsson Remahl et al., Cephalagia 2002

Preventive Treatment of CH					
	EFNS evidence	AAN evidence	Dose per day	Common side effects	
Verapamil	A	С	240-960 mg	Hypotension, constipation, edema	
Lithium	В	С	600-1200 mg	Diarrhea, tremor, polyuria	
Topiramate	В	Not rated	50-200mg	Paresthesias, weight loss, cognitive disorder	
Methysergide	В	Not rated	I-12 mg	Retroperitoneal fibrosis, nausea, vomiting	
Gabapentin	Not rated	Not rated	800-3600 mg	Somnolence, dizziness, weight gain	
Melantonin	С	С	10mg	Fatigue, sedation	
Sodium valporate	С	В	500-2000mg	Tremor, weight gain, hair loss, nausea	
Modified from Robbins et al., Headache. 2016					

Pharmacotherapy of PH, SUNCT, HC					
	PH	SUNCT/SUNA	нс		
Sumatriptan sc.	20%	Rare effect	No effect		
Indomethacin	100%	No effect	100%		
Drug of choice	Indomethacin (75-225 mg/day)	Lamotrigine (100-200 mg/day)	Indomethacin (25-300 mg/day)		
Second line	Other NSAIDs Verapamil Topiramate	Gabapentin Topiramate	Other NSAIDs Verapamil Topiramate		
Others	SPG, GON blocks	Steroids, IV lidocaine	GON blocks, botulinum toxin injection, ONS		
Modified from Burish, CONTINUUM (MINNEAP MINN), 2018					

Phenotypic and Treatment Outcome on SUNCT and SUNA (III)					
	SUNCT Total Effective n n (100%)		SUNA		
			Total n	Effective n (100%)	
Lamotrigine	29	18 (62)	16	5 (31)	
Topiramate	27	13 (48)	9	I	
Gabapentin	29	(38)	18	7 (39)	
Carbamazepine	43	16 (36)	20	4 (20)	
Oxcarbazepine	7	(4)	6	0	
Pregabalin	7	(4)	16	I	
Verapamil	16	2 (13)	5	0	
Valproate	13	0	4	0	
Beta-blocker	7	0	4	0	
Tricylic	36	3	17	3	
Modified from Weng et al., Cephalalgia. 2018					

Noninvasive Vagus Nerve Stimulation (VNS)

- The only noninvasive technique
- ACT-1,ACT-2:

acute responder rate: 34-48%, decrease attack frequency in ~40% of episodic CH

The PREVA study: add-on therapy in chronic CH, higher attack reduction and responder rate than pharmacological prophylaxis

• US FDA: acute treatment and prevention

Wei et al. Pract Neurol. 2019 Goadsby et al. Cephalalgia. 2018

Take Home Messages (II)

- Oxygen and triptans for acute CH attacks, treatment, steroids in transitional prophylaxis, and Verapamil / Lithium in prevention.
- Indomethacin is effective in PH and HC, while lamotrigine is useful for SUNCT.
- DBS and ONS offer prophylactic benefit in selective chronic CH.
 - DBS no more used due to mortality.
- SPG stimulation seems to offer both prophylactic and acute CH relief.
- The US FDA has approved the noninvasive VNS and galcanezumab for the treatment of CH.